Authors:
(1) Ritesh Sharma, University Of California, Merced, USA rsharma39@ucmerced.edu;
(2) Eric Bier, Palo Alto Research Center, USA bier@parc.com;
(3) Lester Nelson, Palo Alto Research Center, USA lnelson@parc.com;
(4) Mahabir Bhandari, Oak Ridge National Laboratory, USA bhandarims@ornl.gov;
(5) Niraj Kunwar, Oak Ridge National Laboratory, USA kunwarn1@ornl.gov.
Table of Links
Conclusion & Future work and References
5 Conclusion & Future work
In summary, our new approach for generating floor plans from triangle mesh data collected by augmented reality (AR) headsets produces two styles: a detailed pen-and-ink style and a simplified drafting style. Our algorithms align the mesh data with primary coordinate axes to produce tidy floor plans with vertical and horizontal walls, while also allowing for the removal of ceilings and floors and the separation of multi-story buildings into individual stories. Our approach integrates with AR, supporting the addition of synthetic objects to physical geometry and providing a detailed 3D model and floor plan.
Potential applications include navigation, interior design, furniture placement, facility management, building construction, and HVAC design. Moving forward, we plan to enable support for sloping ceilings, automate wall and door detection, and integrate with other tools such as energy simulators. Finally, we plan to compare our approach with existing state-of-the-art methods in terms of accuracy and computational time. We also plan to explore the applicability of block-based DBScan for 3D reconstruction from incomplete scans. Our approach has the potential to revolutionize the way we generate and visualize floor plans.
References
-
Adan, A., Huber, D.: 3d reconstruction of interior wall surfaces under occlusion and clutter. In: 2011 International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission. pp. 275–281 (2011). https://doi.org/10.1109/3DIMPVT.2011.42
-
Arikan, M., Schwärzler, M., Flöry, S., Wimmer, M., Maierhofer, S.: O-snap: Optimization-based snapping for modeling architecture. ACM Trans. Graph. 32(1) (feb 2013). https://doi.org/10.1145/2421636.2421642
-
Budroni, A., Boehm, J.: Automated 3d reconstruction of interiors from point clouds. International Journal of Architectural Computing 8(1), 55–73 (2010). https://doi.org/10.1260/1478-0771.8.1.55
-
Cabral, R.S., Furukawa, Y.: Piecewise planar and compact floorplan reconstruction from images. 2014 IEEE Conference on Computer Vision and Pattern Recognition pp. 628–635 (2014)
-
Cai, R., Li, H., Xie, J., Jin, X.: Accurate floorplan reconstruction using geometric priors. Computers & Graphics 102, 360-369 (2022). https://doi.org/10.1016/j.cag.2021.10.011
-
Chen, J., Liu, C., Wu, J., Furukawa, Y.: Floor-sp: Inverse cad for floorplans by sequential room-wise shortest path. In: The IEEE International Conference on Computer Vision (ICCV) (2019)
-
Chen, N., Lu, Z., Yu, X., Yang, L., Xu, P., Fan, Y.: Augmented reality-based home interaction layout and evaluation. In: Computer Graphics International Conference. pp. 395–406. Springer (2022)
-
Dasgupta, S., Fang, K., Chen, K., Savarese, S.: Delay: Robust spatial layout estimation for cluttered indoor scenes. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). pp. 616–624 (2016). https://doi.org/10.1109/CVPR.2016.73
-
Furukawa, Y., Curless, B., Seitz, S.M., Szeliski, R.: Reconstructing building interiors from images. In: 2009 IEEE 12th International Conference on Computer Vision. pp. 80–87 (2009). https://doi.org/10.1109/ICCV.2009.5459145
-
Gao, R., Zhao, M., Ye, T., Ye, F., Wang, Y., Bian, K., Wang, T., Li, X.: Jigsaw: Indoor floor plan reconstruction via mobile crowdsensing. In: Proceedings of the 20th Annual International Conference on Mobile Computing and Networking. p. 249–260. MobiCom ’14, Association for Computing Machinery, New York, NY, USA (2014). https://doi.org/10.1145/2639108.2639134
-
Hsiao, C.W., Sun, C., Sun, M., Chen, H.T.: Flat2layout: Flat representation for estimating layout of general room types. ArXiv abs/1905.12571 (2019)
-
Ikehata, S., Yang, H., Furukawa, Y.: Structured indoor modeling. In: 2015 IEEE International Conference on Computer Vision (ICCV). pp. 1323–1331 (2015). https://doi.org/10.1109/ICCV.2015.156
-
Kruzhilov, I., Romanov, M., Babichev, D., Konushin, A.: Double refinement network for room layout estimation. In: Palaiahnakote, S., Sanniti di Baja, G., Wang, L., Yan, W.Q. (eds.) Pattern Recognition. pp. 557–568. Springer International Publishing, Cham (2020)
-
Lee, C.Y., Badrinarayanan, V., Malisiewicz, T., Rabinovich, A.: Roomnet: Endto-end room layout estimation. 2017 IEEE International Conference on Computer Vision (ICCV) pp. 4875–4884 (2017)
-
Liu, C., Wu, J., Furukawa, Y.: Floornet: A unified framework for floorplan reconstruction from 3d scans. In: ECCV (2018)
-
Liu, H., Yang, Y.L., AlHalawani, S., Mitra, N.J.: Constraint-aware interior layout exploration for precast concrete-based buildings. Visual Computer (CGI Special Issue) (2013)
-
McNeel, R., et al.: Rhinoceros 3d, version 6.0. Robert McNeel & Associates, Seattle, WA (2010)
-
Microsoft: Spatial mapping. https://docs.microsoft.com/en-us/windows/mixed-reality/spatial-mapping (2022)
-
Monszpart, A., Mellado, N., Brostow, G.J., Mitra, N.J.: Rapter: Rebuilding manmade scenes with regular arrangements of planes. ACM Trans. Graph. 34(4) (jul 2015). https://doi.org/10.1145/2766995
-
Mura, C., Mattausch, O., Pajarola, R.: Piecewise-planar reconstruction of multiroom interiors with arbitrary wall arrangements. Computer Graphics Forum 35(7), 179–188 (2016). https://doi.org/https://doi.org/10.1111/cgf.13015
-
Murali, S., Speciale, P., Oswald, M.R., Pollefeys, M.: Indoor scan2bim: Building information models of house interiors. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). pp. 6126–6133 (2017). https://doi. org/10.1109/IROS.2017.8206513
-
Okorn, B., Xiong, X., Akinci, B.: Toward automated modeling of floor plans. In: In Proceedings of the symposium on 3D data processing, visualization and transmission. vol. 2 (2010)
-
Pintore, G., Gobbetti, E.: Effective mobile mapping of multi-room indoor structures. The visual computer 30(6-8), 707–716 (2014)
-
Pintore, G., Mura, C., Ganovelli, F., Fuentes-Perez, L.J., Pajarola, R., Gobbetti, E.: State-of-the-art in Automatic 3D Reconstruction of Structured Indoor Environments. Computer Graphics Forum (2020). https://doi.org/10.1111/cgf.14021
-
Ramakrishnan, S.K., Gokaslan, A., Wijmans, E., Maksymets, O., Clegg, A., Turner, J.M., Undersander, E., Galuba, W., Westbury, A., Chang, A.X., Savva, M., Zhao, Y., Batra, D.: Habitat-matterport 3d dataset (HM3d): 1000 large-scale 3d environments for embodied AI. In: Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2) (2021), https://openreview.net/forum?id=-v4OuqNs5P
-
Turner, E., Zakhor, A.: Watertight as-built architectural floor plans generated from laser range data. In: 2012 Second International Conference on 3D Imaging, Modeling, Processing, Visualization Transmission. pp. 316–323 (2012). https: //doi.org/10.1109/3DIMPVT.2012.80
-
Weinmann, M., Wursthorn, S., Weinmann, M., Hübner, P.: Efficient 3d mapping and modelling of indoor scenes with the microsoft hololens: A survey. PFG–Journal of Photogrammetry, Remote Sensing and Geoinformation Science 89(4), 319–333 (2021)
-
Xiong, X., Adan, A., Akinci, B., Huber, D.: Automatic creation of semantically rich 3d building models from laser scanner data. Automation in Construction 31, 325–337 (2013). https://doi.org/10.1016/j.autcon.2012.10.006
-
Zhang, J., Kan, C., Schwing, A.G., Urtasun, R.: Estimating the 3d layout of indoor scenes and its clutter from depth sensors. In: 2013 IEEE International Conference on Computer Vision. pp. 1273–1280 (2013). https://doi.org/10.1109/ICCV.2013.161
-
Zou, C., Colburn, A., Shan, Q., Hoiem, D.: Layoutnet: Reconstructing the 3d room layout from a single rgb image. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). pp. 2051–2059. IEEE Computer Society, Los Alamitos, CA, USA (jun 2018). https://doi.org/10.1109/CVPR.2018.00219
This paper is available on arxiv under CC BY-NC-ND 4.0 DEED license.